Algebra 1 - Unit 4 Expressions and Equations

Description of the critical area: In this unit, students build on their knowledge from Unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of numbers and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions and determine the values of the function it defines. Students understand that polynomials form a system analogous to the integers, they choose and produce equivalent forms of an expression.

CLUSTERS	COMMON CORE STATE STANDARDS
(m)Interpret the structure of expressions.	Algebra - Seeing Structure in Expressions A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)n$ as the product of P and a factor not depending on P. A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.
(m)Write expressions in equivalent forms to solve problems.	Algebra - Seeing Structure in Expressions A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \star a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.15^{1/2})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
(m)Perform arithmetic operations on polynomials.	Algebra – Arithmetic with Polynomial and Rational Expressions A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
(m)Create equations that describe numbers or relationships.	Algebra - Creating EquationsA-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.A-CED.2 Create equations in two or more variables to represent relationships

LAUSD Secondary Mathematics

August 25, 2016 Draft Page 1

CLUSTERS	COMMON CORE STATE STANDARDS	
	between quantities; graph equations on coordinate axes with labels and scales. A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance R.	
(m)Solve equations and inequalities in one variable.	Algebra - Reasoning with Equations and Inequalities	
	A-REI.4 Solve quadratic equations in one variable.	
	a. Use the method of completing the square to transform any quadratic equation	
	in x into an equation of the form $(x-p)^2 = q$ that has the same solutions. Derive	
	the quadratic formula from this form.	
	b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square	
	roots, completing the square, the quadratic formula and factoring, as appropriate	
	to the initial form of the equation. Recognize when the quadratic formula gives	
	complex solutions and write them as $a \pm bi$ for real numbers a and b.	
(s)Solve systems of equations.	Algebra - Reasoning with Equations and Inequalities	
	A-RELS. Prove that, given a system of two equations in two variables, replacing	
	one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
	System with the same solutions. $\Delta_{\rm r}$ REL6. Solve systems of linear equations exactly and approximately (e.g.	
	with graphs) focusing on pairs of linear equations in two variables	
	A-REL7 Solve a simple system consisting of a linear equation and a quadratic	
	equation in two variables algebraically and graphically. <i>For example, find the</i>	
	points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	
MATHEMATICAL PRACTICES		
1. Make sense of problems and persevere in solving them.		
2. Reason abstractly and quantitatively.		
3. Construct viable arguments and critique the reasoning of others.		
4. Model with mathematics.		
5. Use appropriate tools strategically.	Emphasize Mathematical Practice 1, 2, 4, and 7 in this unit.	
6. Attend to precision.		
7. Look for and make use of structure.		
8. Look for and express regularity in repeated reasoning.	DOCRESSIONS	
LEARNING PROGRESSIONS		
Progression to Algebra		
Progression on HS Math (Functions) - http://commoncoretools.me/wp-content/uploads/2012/12/ccss_progression_functions_2012_12_04.pdf		
(m)Major Clusters – area of intensive focus where students need fluent understanding and application of the core concepts.		
(s)Supporting/Additional Clusters - designed to support and strengthen areas of major emphasis/expose students to other subjects.		

LAUSD Secondary Mathematics

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
 Represent a quantity in terms of an expression, such as terms, factors, and coefficients by viewing one or more of their parts as a single entity. Write in equivalent forms to find solutions that reveal and explain properties of quadratic expressions from completing the square, factoring, and using properties of exponents. Apply rules so that polynomials form a system analogous to integers. Represent equations and inequalities in one variable in various ways and use them to solve problems. Understand the relationship between quantities of two or more variables through graphing on a coordinate plane system. Transform quadratic equations using the method of completing the square to derive a solution. Recognize the various methods to solve quadratic equations stemming from an initial form as appropriate: taking the square root, completing the square, using the quadratic formula, and factoring. Identify when the quadratic formula gives complex solutions. Solve systems of linear equations in two variables algebraically and graphically 	 How will students identify the different parts of an expression and explain their meaning within the context of the problem? What is the importance of identifying the structure of an expression and ways to rewrite it? Why is it important to solve and produce equivalent forms of an expression? When is factoring the best method to solve a quadratic equation? When is completing the square useful to reveal the maximum or minimum value of the function it defines? How do students know which method to use in solving quadratic equations? Why is it important to know the operations of integers to understand the properties of polynomials? How can students analyze algebraic equations/inequalities to solve problems? What must students understand in order to create equations that describe numbers or relationships? How do students know which is the most efficient ways to solve a quadratic equation? Why is it important to understand solving a system of linear and quadratic equations in two variables algebraically and graphically? How are the methods of solving a quadratic equation related? How do students know when the roots of a quadratic equation are real or complex? Why are the methods of solving quadratic equations not learned in isolation? 	 Analogous complex coefficient coordinate equation equivalent exponentials expression factors function inequalities interpret intersection linear polynomial product quadratic quantity term transform variable

LAUSD Secondary Mathematics

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	• Have students create multiple ways to rewrite an	Formative Assessment
Big Ideas Learning - Houghton Mifflin	expression that represents its equivalent form. Have them	
Harcourt, 2015: Big Ideas Algebra I	understand the notion of equivalent expression and the	
<u>College Preparatory Mathematics</u> , 2013:	solution to an equation. Help them to understand that an	
Core Connections, Algebra I	equation in two variables can sometimes be viewed as	
<u>The College Board, 2014:Springboard</u>	defining a function, if one of the variables is designated as	
<u>Algebra I</u>	the input variable and the other as the output variable, and	
	if there is just one output for each input. This is the case if	
Enage New York	the expression is of the form $y = (expression in x)$ or if it	
	can be put into the form by solving for y.	
Algebra I Module 4: Polynomial and Quadratic	• The use of algebraic tiles to establish a visual	
Expressions, Equations, and Functions	understanding of algebraic expression and the meaning of	LAUSD Assessments
	terms, factors, and coefficients can be effective.	The district will be using the SMARTER
Illustrative Mathematics	• The development and proper use of mathematical	Balanced Interim Assessments. Teachers
http://www.illustrativemathematics.org/standard	language (ie: Frayer Model, Word Wall, using real world	would use the Interim Assessment Blocks
<u>s/hs</u>	context) could be used to introduce new terms.	(IAB) to monitor the progress of students.
	• Engage students in various techniques for solving	Each IAB can be given twice to show growth
http://www.wiki-teacher.com/ Math Resources -	quadratic equations and the relationship between those	over time.
algebra	techniques (A-REI.4.a-b). Teach students to make use of	State Assessments
	the symmetric and transitive properties, and certain	
Mathematics Assessment Projects (MARS	properties of equality with regards to operations (e.g.	California will be administering the
Tasks)	"equals added to equals is equal") when solving equations.	SMARTER Balance Assessment as the end of
http://map.mathshell.org/materials/tasks.php	This approach would enable students to establish the idea	course for grades 3-8 and 11. There is no
Algebra lessons	of proof, while not explicitly named, is given a prominent	assessment for Algebra 1.
	role in the solving of equations, and the reasoning and	The 11th grade assessment will include items
	justification process is not simply relegated to a future	from Algebra 1, Geometry, and Algebra 2
	mathematics course.	standards. For examples, visit the
	• Tile representations of quadratics illustrate that the	SMARTER Balance Assessment at:
	process of completing the square has a geometric	SBAC - <u>nup://www.smarterbalanced.org/</u>
	interpretation that explains the origin of the name.	
	Encourage students to explore these representations in	
	order to make sense out of the process of completing the	
	square (MP.1, MP.5). Completing the square is an	
	example of a theme that reoccurs throughout algebra:	
	finding ways of transforming equations into certain	
	standard forms that have the same solutions.	

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
	Completing the Square: The method of completing the square is a useful skill in Algebra. It is generally used to change a quadratic in standard form, $ax^2 + bx + c$, into one in vertex-form, $a(x - h)^2 + k$. The vertex form can help determine several properties of quadratic functions.subtract 1 to the quadratic expression: $y = x^2 + 8x + 15 + 1 - 1 = x^2 + 8x + 16 - 1$. Factoring gives us $y = (x + 4)^2 - 1$. In the picture, note that the tiles used to represent $x^2 + 8x + 15$ have been rearranged to try to form a square, and that a positive unit tile and a "negative"Completing the square also has applications in Geometry (G-GPE.1) and later higher mathematics courses.unit tile are added into the picture to "complete the square."Example: To complete the square for the quadratic $y = x^2 + 8x + 15$, we take half the coefficient of the x-term and square it to yield 16. We realize that we need only to add 1 andunit tile are addeed into the picture to "complete the square."	

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners		
Students will be able to compare and contrast the various methods of solving <i>Example:</i> To solve this quadratic equation, I use	g a quadratic equation.	because
Students will be able to explain (orally and in writing) their understanding or <i>Example</i> : $x^2 + 6x + 9 = $	f the properties of the quanti	ty represented in terms of their context.
Students will be able to read a word problem and identify the language need <i>Example</i> :	to create an algebraic repres	sentation in order to solve the problem.
Students will explain the use of themethod to <i>Example</i> : To solve this quadratic equation, I use	find the solution of the quad because	ratic equation. (writing/speaking)
Students will be able to understand the vocabulary for the parts that make the meaning in terms of a context.	e whole expression/equation	and be able to identify their parts and interpret their
<i>Example:</i> Using the Frayer Model to introduce students to understand the di	ifference between the parts of	of an expression and that of an equation.
PERFORM	IANCE TASKS	
Mathematics Assessment Project – MARS Task		
• <u>Interpreting Algebraic Expressions</u> - A.SSE.1-2:		
• <u>Solving Linear Equations in Two Variables</u> – A.REI.5-7:		
• <u>Sorting Equations and Identities</u> – A.SSE.1-3, A.REI.4:		

DIFFERENTIATION		
UDL/FRONT LOADING	ACCELERATION	INTERVENTION
• Have students apply their understanding of expressions as sums of terms and products of factors to find and use the properties of operations to find the values of numerical expressions.	• Provide the students with a problem (either quadratic equation or system of linear equations), ask them to solve it by different methods (for system: algebraic methods – elimination, substitution, addition, etc. and graphing; for quadratics – factoring, completing by square, quadratic formula, graphing), then have them write an explanation of which method was most	 Use of real context examples to demonstrate the meaning of quadratics equation, such rocket trajectory, basketball path when thrown to the hoop, etc. Have students use technology, such as graphing calculator, graphing apps, and other software to graph both a linear
• Engage students in a discussion regarding applying their prior knowledge about the order of operations and properties of operations to transform simple expressions. Transformations require an understanding of the rules for multiplying negative numbers, and properties of integer exponents.	 relevant to the problem type. Take students through the process of designing word problems involving quadratic equations and functions. Have students write a scenario and explain the process needed to solve a system of linear and quadratic equations with two variables. Create a real world problem where factoring is the best method to solve a quadratic expression. Have 	 function and quadratic function on the same plane. Engage them in a discussion to identify the point of intersection of the linear graph and the quadratics graph and discuss what that means. Provide a situation that uses realia to further demonstrate the meaning of quadratic equation.
• Involve students to have a discussion that would have them extend their knowledge of analyzing and solving linear equations and pairs of simultaneous linear equations. Have them use their prior knowledge of graphing proportional relationships, lines, and linear equations to approaching system of linear and quadratic equations with two variables.	students apply their math knowledge of quadratic equations to solve a word problem they have created.	